Search results for "MOTT INSULATOR"

showing 10 items of 26 documents

Probing the bond order wave phase transitions of the ionic Hubbard model by superlattice modulation spectroscopy

2017

An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidences, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions …

BosonizationHubbard model[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]SuperlatticeGeneral Physics and AstronomyIonic bondingFOS: Physical sciences01 natural sciencesCondensed Matter - Strongly Correlated ElectronsPhysics and Astronomy (all)0103 physical sciencesBosonizationCold atoms010306 general physicsPhysicsCondensed Matter::Quantum GasesCondensed matter physicsDensity Matrix Renormalization GroupStrongly Correlated Electrons (cond-mat.str-el)010308 nuclear & particles physicsMott insulatorBerezinskii-Kosterlitz-Thouless transitionIsing transitionRenormalization groupBond orderQuantum Gases (cond-mat.quant-gas)Ising modelCondensed Matter::Strongly Correlated ElectronsCondensed Matter - Quantum Gases
researchProduct

Accessing finite momentum excitations of the one-dimensional Bose-Hubbard model using superlattice modulation spectroscopy

2018

We investigate the response to superlattice modulation of a bosonic quantum gas confined to arrays of tubes emulating the one-dimensional Bose-Hubbard model. We demonstrate, using both time-dependent density matrix renormalization group and linear response theory, that such a superlattice modulation gives access to the excitation spectrum of the Bose-Hubbard model at finite momenta. Deep in the Mott-insulator, the response is characterized by a narrow energy absorption peak at a frequency approximately corresponding to the onsite interaction strength between bosons. This spectroscopic technique thus allows for an accurate measurement of the effective value of the interaction strength. On th…

BosonizationPhysicsCondensed Matter::Quantum GasesCondensed matter physics[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Density matrix renormalization groupMott insulatorSuperlatticeFOS: Physical sciencesBose–Hubbard model01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSuperfluidityBose-Hubbard modelQuantum Gases (cond-mat.quant-gas)Atomic and Molecular PhysicsDMRG0103 physical sciencesBosonizationand Optics010306 general physicsCondensed Matter - Quantum GasesFrequency modulationBoson
researchProduct

Defect-Induced Orbital Polarization and Collapse of Orbital Order in Doped Vanadium Perovskites

2018

We explore mechanisms of orbital order decay in doped Mott insulators $R_{1-x}$(Sr,Ca)$_x$VO$_3$ ($R=\,$Pr,Y,La) caused by charged (Sr,Ca) defects. Our unrestricted Hartree-Fock analysis focuses on the combined effect of random, charged impurities and associated doped holes up to $x=0.5$. The study is based on a generalized multi-band Hubbard model for the relevant vanadium $t_{2g}$ electrons, and includes the long-range (i) Coulomb potentials of defects and (ii) electron-electron interactions. We show that the rotation of occupied $t_{2g}$ orbitals, induced by the electric field of defects, is a very efficient perturbation that largely controls the suppression of orbital order in these com…

Condensed Matter - Materials ScienceMaterials scienceStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsHubbard modelMott insulatorDopingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyElectronKinetic energy01 natural sciencesSpectral lineCondensed Matter - Strongly Correlated ElectronsAtomic orbitalSuperexchange0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physics
researchProduct

Realistic investigations of correlated electron systems with LDA + DMFT

2006

Conventional band structure calculations in the local density approximation (LDA) [1–3] are highly successful for many materials, but miss important aspects of the physics and energetics of strongly correlated electron systems, such as transition metal oxides and f-electron systems displaying, e.g., Mott insulating and heavy quasiparticle behavior. In this respect, the LDA + DMFT approach which merges LDA with a modern many-body approach, the dynamical mean-field theory (DMFT), has proved to be a breakthrough for the realistic modeling of correlated materials. Depending on the strength of the electronic correlation, a LDA + DMFT calculation yields the weakly correlated LDA results, a strong…

Condensed Matter::Quantum GasesCondensed matter physicsHubbard modelElectronic correlationChemistryMott insulatorQuantum Monte CarloCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuasiparticleCondensed Matter::Strongly Correlated ElectronsStrongly correlated materialddc:530Metal–insulator transitionLocal-density approximation
researchProduct

Probing number squeezing of ultracold atoms across the superfluid-Mott insulator transition.

2005

The evolution of on-site number fluctuations of ultracold atoms in optical lattices is experimentally investigated by monitoring the suppression of spin-changing collisions across the superfluid-Mott insulator transition. For low atom numbers, corresponding to an average filling factor close to unity, large on-site number fluctuations are necessary for spin-changing collisions to occur. The continuous suppression of spin-changing collisions is thus a direct evidence for the emergence of number-squeezed states. In the Mott insulator regime, we find that spin-changing collisions are suppressed until a threshold atom number, consistent with the number where a Mott plateau with doubly-occupied …

Condensed Matter::Quantum GasesPhysicsCondensed matter physicsFilling factorMott insulatorFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmaslaw.inventionCondensed Matter - Other Condensed MatterSuperfluiditylawUltracold atom[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesAtomCondensed Matter::Strongly Correlated ElectronsAtomic number010306 general physicsBose–Einstein condensateOther Condensed Matter (cond-mat.other)Spin-½Physical review letters
researchProduct

Defects, Disorder, and Strong Electron Correlations in Orbital Degenerate, Doped Mott Insulators.

2015

We elucidate the effects of defect disorder and $e$-$e$ interaction on the spectral density of the defect states emerging in the Mott-Hubbard gap of doped transition-metal oxides, such as Y$_{1-x}$Ca$_{x}$VO$_{3}$. A soft gap of kinetic origin develops in the defect band and survives defect disorder for $e$-$e$ interaction strengths comparable to the defect potential and hopping integral values above a doping dependent threshold, otherwise only a pseudogap persists. These two regimes naturally emerge in the statistical distribution of gaps among different defect realizations, which turns out to be of Weibull type. Its shape parameter $k$ determines the exponent of the power-law dependence o…

FOS: Physical sciencesGeneral Physics and Astronomylaw.inventionCondensed Matter - Strongly Correlated ElectronsPhysics and Astronomy (all)lawMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin (physics)Condensed Matter - Statistical MechanicsPhysicsCondensed Matter - Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)Statistical Mechanics (cond-mat.stat-mech)Condensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMott insulatorDopingDegenerate energy levelsMaterials Science (cond-mat.mtrl-sci)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksKröger–Vink notationDensity of statesCondensed Matter::Strongly Correlated ElectronsScanning tunneling microscopePseudogapPhysical review letters
researchProduct

Routing quantum information in spin chains

2013

Two different models for performing efficiently routing of a quantum state are presented. Both cases involve an XX spin chain working as data bus and additional spins that play the role of sender and receivers, one of which is selected to be the target of the quantum state transmission protocol via a coherent quantum coupling mechanism making use of local/global magnetic fields. Quantum routing is achieved, in the first of the models considered, by weakly coupling the sender and the receiver to the data bus. In the second model, strong magnetic fields acting on additional spins located between the sender/receiver and the data bus allow us to perform high fidelity routing.

FOS: Physical sciencesNetworkQuantum capacityTopology01 natural sciencesAtomic mott insulatorSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasQuantum stateAtomic and Molecular Physics0103 physical sciencesComputer Science::Networking and Internet ArchitectureQuantum couplingQuantum information010306 general physicsQuantum information scienceSystem busSpin-½PhysicsQuantum PhysicsHardware_MEMORYSTRUCTURESState transferAtomic and Molecular Physics and OpticsQuantum information quantum comunicationPhaseRouting (electronic design automation)and OpticsQuantum Physics (quant-ph)
researchProduct

Facet-Independent Electric-Field-Induced Volume Metallization of Tungsten Trioxide Films.

2015

Reversible metallization of band and Mott insulators by ionic-liquid gating is accompanied by significant structural changes. A change in conductivity of seven orders of magnitude at room temperature is found in epitaxial films of WO3 with an associated monoclinic-to-cubic structural reorganization. The migration of oxygen ions along open volume channels is the underlying mechanism.

Materials scienceOrders of magnitude (temperature)Inorganic chemistry02 engineering and technologyGatingConductivityEpitaxy01 natural sciencesCondensed Matter::Materials Sciencechemistry.chemical_compoundElectric field0103 physical sciencesGeneral Materials Scienceskin and connective tissue diseases010306 general physicsCondensed matter physicsMechanical EngineeringMott insulator021001 nanoscience & nanotechnologyTungsten trioxideVolume (thermodynamics)chemistryMechanics of MaterialsCondensed Matter::Strongly Correlated Electronssense organs0210 nano-technologyAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Emergence of a metallic metastable phase induced by electrical current in Ca2RuO4

2019

A comprehensive study of the behavior of the Mott insulator ${\mathrm{Ca}}_{2}{\mathrm{RuO}}_{4}$ under electrical current drive is performed by combining two experimental probes: the macroscopic electrical transport and the microscopic x-ray diffraction. The resistivity, $\ensuremath{\rho}$, versus electric current density, $J$, and temperature, $T,\ensuremath{\rho}(J,T)$, resistivity map is drawn. In particular, the metastable state, induced between the insulating and the metallic thermodynamic states by current biasing ${\mathrm{Ca}}_{2}{\mathrm{RuO}}_{4}$ single crystals, is investigated. Such an analysis, combined with the study of the resulting ${\mathrm{RuO}}_{6}$ octahedra energy le…

Materials scienceStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsMott insulatorFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencescrystalCrystalCondensed Matter - Strongly Correlated ElectronsTetragonal crystal systemMott; crystalElectrical resistivity and conductivityCondensed Matter::SuperconductivityPhase (matter)Metastability0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsOrthorhombic crystal system010306 general physics0210 nano-technologyMottEnergy (signal processing)Physical Review B
researchProduct

Spatial quantum noise interferometry in expanding ultracold atom clouds

2005

It is ten years since the exotic form of matter known as a Bose–Einstein condensate was first created. It was the birth of ultra-low-temperature physics, and practitioners gathered last month in Banff, Canada, to celebrate and discuss the latest news, as Karen Fox reports. And this week a new development that could have a major impact in the field is announced. In the 1950s, Hanbury Brown and Twiss showed that it is possible to measure angular sizes of astronomical radio sources from correlations of signal intensities in independent detectors. ‘HBT interferometry’ later became a key technique in quantum optics, and now it has been harnessed to identify a quantum phase of ultracold bosonic a…

Nuclear TheoryFOS: Physical sciencesQuantum phases01 natural sciences010305 fluids & plasmaslaw.invention010309 opticslawUltracold atomQuantum mechanics0103 physical sciencesPhysics::Atomic PhysicsNuclear Experiment010306 general physicsQuantum statistical mechanicsQuantumCondensed Matter::Quantum GasesQuantum opticsPhysicsOptical latticeMultidisciplinaryMott insulatorQuantum noiseShot noiseCondensed Matter - Other Condensed Matter[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Atom opticsAtomic physicsBose–Einstein condensateOther Condensed Matter (cond-mat.other)Nature
researchProduct